Аэрофонтанная сушилка представляет собой камеру конической формы. Влажный материал поступает из бункера через питатель и переносится газом-теплоносителем в камеру сушилки. Следствием конусности является интенсивная циркуляция материала в камере. Материал поднимается, фонтанирует в центральной части камеры сушилки и опускается в ее периферийной части.

Если частицы высушиваемого материала близки по размерам и плотности, то высушенные частицы как более легкие уносятся газом из сушилки и улавливаются, например, в циклоне. Для таких материалов в условиях их большой начальной влажности аэрофонтанные сушилки могут оказаться рентабельнее сушилок кипящего слоя, т.к. они проще и дешевле.

1 - камера; 2 - перегородки; 3 - решетка; 4 - газовые коллекторы; 5 - слой; 6 - порог.

Рисунок 154 - Горизонтальная непрерывнодействующая секционированная сушилка.

Интенсивное движение частиц в псевдоожиженном слое приводит к обратному перемешиванию твердой фазы. Поэтому во всем слое без перегородок температура практически одинакова и равна температуре выгружаемого продукта. При наличии перегородок обратное перемешивание отмечается лишь в пределах одной секции и движение частиц приближается к поршневому режиму. Поэтому падение температуры в слое и движущая сила больше, а тепло- и массообмен интенсивнее. Кроме того, как уже отмечалось выше, равномерность обработки материала повышается.

Самое простое - горизонтальное секционирование с расположением камер, разделенных перегородками, на одном уровне.

Сушилка системы Turbo-Flo (рисунок 154) представляет собой прямоугольный аппарат, разделенный вертикальными перегородками на ряд камер. В одних идет основной процесс сушки, в других материал досушивается за счет аккумулированного тепла и затем охлаждается. Под сушильными камерами сжигают природный газ, продукты сгорания которого в смеси с воздухом проходят через решетку в слой материала. Первая секция получает самую горячую смесь, в последующую смесь поступает с более низкой температурой. В камеры охлаждения подают холодный воздух. Для улавливания мелких частиц из уходящих газов, используют циклон, помещенный в свободном пространстве камеры. Аппарат можно применять для сушки, обжига и в качестве реактора.

Горизонтальная непрерывнодействующая сушилка имеет сушильную камеру 1, разделенную вертикальными перегородками 2. Под перфорированной решеткой 3 находятся самостоятельные газовые коллекторы 4. Материал вводят в камеру 1 и сквозь щели, образуемые перегородками 2 и решеткой 3, разгружают через порог 6 последней секции. Отработанный теплоноситель частично рециркулирует. В каждую газовую камеру, если это необходимо, можно подавать теплоноситель различной температуры.

В Ивановском химико-технологическом институте (ИХТИ) Кисельниковым с сотрудниками создано несколько конструкций безуносных комбинированных сушилок. В отдельных ступенях этих сушилок обеспечиваются разные тепловые и гидродинамические условия, выбираемые в соответствии со свойствами высушиваемых материалов (термолабильность, размеры частиц, форма связи влаги с материалом, начальная и конечная влажность и т.д.). Отличительной чертой этих сушилок является то, что в ходе сушильного процесса обеспечивается очистка воздуха, выходящего из последней ступени, за счет контакта пыли с загружаемым влажным материалом. Необходимое время пребывания обрабатываемого продукта достигается в аппарате с псевдоожиженным слоем, что позволяет осуществить глубокую сушку материалов, содержащих связанную влагу.

1-питатель влажного материала; 2- циклон; 3 - пневмопитатель подсушенного материала; 4 - пневмотруба; 5-аппарат с кипящим слоем.

Рисунок 155 - Сушилка “Циклон- кипящий слой”.

Для обезвоживания целого ряда материалов успешно применяется в промышленности комбинированная сушилка типа “циклон-кипящий слой” (рисунок 155). Влажный материал подается через верхний пневмопитатель 1 отработанным сушильным агентом в циклон 2, где происходит подсушка и смешивание влажного материала с сухими частицами уноса. Это препятствует его слипанию и комкованию. Материал приобретает сыпучесть и поступает в нижний пневмопитатель 3 с некоторым количеством отработанного сушильного агента. Степень рециркуляции можно регулировать изменением размера сопла нижнего пневмопитателя. Остальное количество сушильного агента, охлажденного влажным материалом, выбрасывается в атмосферу. Нижний пневмопитатель подает подсушенный материал в пневмотрубу 4, которая служит второй ступенью установки и также предназначена для удаления влаги с поверхности частиц. Из пневмотрубы материал подается в сушилку с закрученным кипящим слоем. Закручивание создается за счет тангенциального ввода материала и специальной конструкции газораспределительной решетки. Досушка продукта до заданной конечной влажности обеспечивается благодаря регулируемому времени пребывания в результате создания определенной высоты кипящего слоя.

Такие сушилки хорошо зарекомендовали себя в промышленной практике. Так, например, производительность одного аппарата с площадью газораспределительной решетки 0,128 м2 при обезвоживании полиметилметакрилата от начальной влажности 5% до конечной 0,1% составляет 500 кг/ч.